Enviar por email

tu nombre: email destino: mensaje:
Nombre de Usuario: Email: Contraseña: Confirmar Contraseña:
Entra con
Confirmando registro ...

Edita tu perfil:

Usuario:
País: Población: Provincia:
Género: Cumpleaños:
Email: Web:
Como te describes:
Contraseña: Nueva contraseña: Repite contraseña:

sábado, 2 de diciembre de 2017

Un nuevo comienzo para el ahorro de energía

Por Janet Rios

Históricamente las primeras aplicaciones de la energía eólica fueron el impulso de navíos, la molienda de granos y el bombeo de agua, y sólo hasta finales del siglo pasado la generación de energía eléctrica. En esta actualidad que impera, las turbinas eólicas convierten la energía cinética del viento en electricidad por medio aspas o hélices que hacen girar un eje central conectado, a través de una serie de engranajes (la transmisión) a un generador eléctrico.La investigación y desarrollo de nuevos diseños y materiales para aplicaciones en aerogeneradores eólicos, hacen de esta tecnología una de las más dinámicas, por lo cual constantemente están saliendo al mercado nuevos productos más eficientes con mayor capacidad y confiabilidad.

Un sistema conversor de energía eólica se compone de tres partes principales: el rotor, que convierte la energía cinética del viento en un movimiento rotatorio en la flecha principal del sistema; un sistema de transmisión, que acopla esta potencia mecánica de rotación de acuerdo con el tipo de aplicación. Lo cual quiere decir, si se trata de bombeo de agua el sistema se denomina aerobomba, si acciona un dispositivo mecánico se denomina aeromotor y si se trata de un generador eléctrico se denomina aerogenerador.

El rotor puede ser de eje horizontal o vertical, éste recupera, como máximo teórico, el 60% de la energía cinética del flujo de viento que lo acciona. Está formado por las aspas y la maza central en donde se fijan éstas y se unen a la flecha principal; el rotor puede tener una o más aspas. Un rotor pequeño, de dos aspas, trabaja a 900 revoluciones por minuto (rpm), en tanto que uno grande, de tres aspas y 56 metros de diámetro, lo hace a 32 rpm. El rotor horizontal de tres aspas es el más usado en los aerogeneradores de potencia, para producir electricidad trifásica conectada a los sistemas eléctricos de las empresas suministradoras.

La transmisión puede consistir en un mecanismo para convertir el movimiento rotatorio de la flecha en un movimiento recíproco para accionar las bombas de émbolo de las aerobombas, que en el campo se utilizan para suministrar agua a los abrevaderos del ganado o a las viviendas. En la actualidad, la generación de electricidad es la aplicación más importante de este tipo de sistemas. Este tipo de tecnología alcanzan desde 500 hasta 1,000 kW de potencia nominal, tienen rotores de entre 40 y 60 m de diámetro y giran con velocidades que van de las 60 a las 30 rpm. Los generadores eléctricos pueden ser asíncronos o síncronos, operando a una velocidad y frecuencia constante, que en México es de 60 hz.. En el caso de aerogeneradores con potencias inferiores a los 50 kW también se utilizan generadores de imanes permanentes, que trabajan a menor velocidad angular (de entre 200 y 300 rpm), que no necesitan caja de engranes y que, accionándose a velocidad variable, pueden recuperar mayor energía del viento a menor costo.

Un sistema conversor de energía eólica es tan bueno como su sistema de control. El viento incide desde la función del cuadrado de la velocidad de éste. Rachas de más de 20 metros por segundo, que equivalen a más de 70 km/hora, pueden derribar una barda o un anuncio espectacular, e incluso dañar un aerogenerador si éste no está bien diseñado o su sistema de control esta fallando.

En los aerogeneradores de potencia, el sistema de control lo constituye un microprocesador que analiza y evalúa las condiciones de operación considerando rumbo y velocidad del viento; turbulencia y rachas; temperaturas en el generador, en la caja de transmisión y en los baleros de la flecha principal. Pueden identificar las vibraciones indebidas en el sistema, optando por las mejores condiciones para arrancar, parar, orientar el sistema al viento y enviar señales al operador de la central eoloeléctrica sobre la operación del mismo.

La torre que soporta al aerogenerador de eje horizontal es importante, ya que la potencia del viento es función del cubo de su velocidad y el viento sopla más fuerte entre mayor es la distancia más alto del suelo; por ello, el eje del rotor se sitúa por lo menos a 10 metros en aerogeneradores pequeños y hasta 50 o 60 metros del suelo, en las máquinas de 1000 kW. En un sistema como este de 500 kW son típicas las torres de 40 metros, y estas pueden ser de dos tipos: La tubular, recomendada en áreas costeras, húmedas y salinas, y la estructural o reticular, propia de regiones secas y poca contaminación atmosférica, por ser más baratas y fáciles de levantar.Lo cierto es que esta tecnología se encuentra en estudio e implementación en varios países del mundo, con el objetivo de lograr un ahorro de la energía eléctrica y el más importante conservar el medio ambiente.